

Leadshine AM882

Драйвер шаговых двигателей

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ
01. Общие сведения
02. Технические характеристики
03. Назначение и описание разъемов 5
04. Подключение разъема Р1
05. Подключение двигателей
06. Выбор источника питания
07. Выбор разрешения микрошага и выходного тока драйвера9
08. Автоматическая подстройка драйвера
09. Выбор активного фронта сигнала
10. Выбор предустановленной конфигурации
11. Типовая схема подключения
12. Схема последовательности управляющих сигналов14
13. Защитные функции и индикация ошибок
14. Типичные проблемы и их причины
15. Настройка драйвера при помощи ПО ProTuner

Более подробную информацию по использованию и настройке нашей продукции Вы найдете на www.purelogic.ru

01

Общие сведения

Описание

АМ882 — цифровой драйвер шагового двигателя на основе сигнального процессора с применением современных управляющих алгоритмов. В АМ882 реализованы высокая плавность движения вала шагового двигателя, высокий отдаваемый момент и алгоритмы подавления резонанса шагового двигателя.

Условия эксплуатации и другие характеристики

AM882 предназначен для управления двухфазными и четырехфазными шаговыми двигателями. Драйвер имеет следующие особенности:

- система подавления резонанса шагового двигателя;
- алгоритм определения остановки вала двигателя («срыва») при скоростях выше 300 об/мин;
- функция автоматической подстройки драйвера под двигатель для получения оптимальных параметров движения;
- микрошаг до 1:512;
- встроенные конфигурации для 16 видов двигателей;
- поддержка протоколов STEP/DIR и CW/CCW;
- оптоизолированные входы и выходы;
- автоматическое снижение тока удержания (настраиваемая степень снижения);
- защита от превышения напряжения питания, превышения тока фаз, неправильного подключения фаз двигателя.

Область применения

Драйвер АМ882 подходит для управления широким диапазоном шаговых двигателей (от 17 до 34 типоразмера NEMA). Может использоваться в различных видах станков: лазерных резаках, лазерных маркировщиках, высокоточных координатных станках, станках для нанесения этикеток и т. д. Характеристики АМ882 делают его идеальным инструментом для задач, в которых требуется плавность хода и высокая скорость обработки.

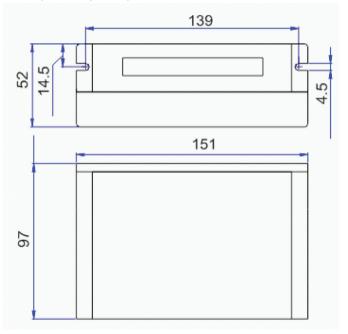
Технические характеристики

02

Электрические характеристики (T_i=25°C)

	AM882					
Параметр	Мин.	Норм.	Макс.	Ед.изм.		
Выходной ток	0.1	-	8.2	Α		
Напряжение питания	+20	+68	+80	В постоянного тока		
Ток логического сигнала	7	10	16	мА		
Частота входного сигнала	0	-	200	кГц		
Сопротивление изоляции	500			МОм		

Рабочие условия и прочие характеристики


Охлаждение	Естественное или принудительное				
	Окружающая среда	Избегать запыленности, масляного тумана и агрессивных газов			
Рабочая среда	Температура воздуха	0°C - 50°C			
	Влажность	40% - 90%			
	Рабочая температура	<70°C			
	Вибрация	<5.9m/c2			
Температура хранения	-20°C ~ 65°C				
Bec	~570 г				

Теплоотведение

- Рабочая температура драйвера должна быть ниже 70°С, а рабочая температура двигателя — ниже 80°С;
- Рекомендуется использовать режим автоматического тока удержания;
- Устанавливайте драйвер вертикально для увеличения теплоотведения.
 При необходимости используйте принудительное охлаждение.

Габаритные размеры (ед. изм.: мм)

Назначение и описание разъемов

03

Драйвер AM882 имеет два разъема: разъем P1 используется для управляющих сигналов, а разъем P2 — для подключения питания и двигателя.

Конфигурация разъема Р1

Контакт	Описание
PUL+ PUL-	В режиме PUL/DIR - вход сигнала PUL (срабатывание по переднему или заднему фронту сигнала), в режиме СW/CCW – вход сигнала СW (срабатывание на обоих фронтах). В случае уровней напряжения 12В и 24В требуется использовать токоограничивающий резистор (аналогично для входов ENA и DIR). Для стабильной обработки сигнала его длительность должна быть не менее 2.5 мкс
DIR+ DIR-	В режиме STEP/DIR – вход сигнала DIR (направление движения). В режиме CW/CCW – вход сигнала CCW (срабатывание на обоих фронтах). Для стабильной обработки сигнала его длительность должна быть не менее 5 мкс.
ALM+ ALM-	Выход типа «открытый коллектор», активируется при срабатывании защиты драйвера или аварийной остановке вала. Полярность программируется через ПО ProTuner. Напряжение 30B, ток до 100мА.
ENA+ ENA-	Сигнал ENABLE активности драйвера. Высокий уровень (NPN) сигнала активирует драйвер, низкий деактивирует (запрещает управление двигателем).

Выбор активного фронта сигнала и режима сигнала

Драйвер AM882 поддерживает режимы STEP/DIR и CW/CCW, и выбор в качестве активного как переднего, так и заднего фронта. По умолчанию установлен режим STEP/DIR и активен передний фронт.

Конфигурация разъема Р2

Контакт	Описание
+Vdc	Электропитание, 24–80 В постоянного тока, с учетом защиты от колебаний напряжения и ЭДС
GND	Земля
A+, A-	Фаза А
B+. B-	Фаза В

04

Подключение разъема Р1

Драйвер АМ882 имеет 3 оптоизолированных логических входа, расположенных в разъеме Р1. Для подключения управляющих сигналов рекомендуется использовать кабель типа «витая пара». Входные и выходные кабели не должны располагаться слишком близко во избежание помех. Все операции с кабелями необходимо производить только на выключенном устройстве!

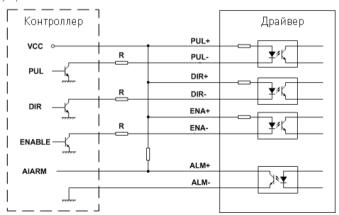


Рис. 1 Габаритные размеры

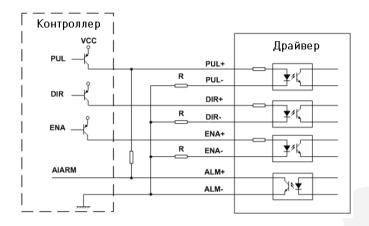


Рис. 2 Подключение с общим катодом

05

Подключение двигателей

Драйвер AM882 может управлять любыми двухфазными или четырехфазными гибридными шаговыми двигателями. Рекомендуется использовать биполярные гибридные двигатели с 4 выводами (схема A).

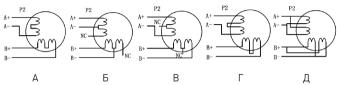


Схема A соответствует подключению шаговых двигателей с 4 выводами. Двигатели с 6 выводами подключаются по схеме Б или В. Двигатели с 8 выводами — по схемам Γ или Ω .

Запрещается подключать или отключать какие-либо кабели на включенном драйвере!

06

Выбор источника питания

Выбор источника питания влияет на конечные параметры движения шагового двигателя. В общем случае, повышение напряжения питания увеличивает максимальную скорость (за счет увеличения момента на высоких скоростях вращения), нагрев двигателя и его вибрации на низких частотах, а увеличение тока фазы соответствует увеличению общего крутящего момента и нагрева двигателя. Если не ставится требований по достижению высоких скоростей вращения шагового двигателя, рекомендуется использовать низкие питающие напряжения для уменьшения нагрева двигателя, снижения шума и повышения надежности системы.

Для питания драйвера можно использовать как линейные, так и импульсные источники питания. Линейные ИП на основе трансформаторов более предпочтительны. В случае использования импульсных источников питания настоятельно рекомендуется использовать ИП с запасом по току.

При подключении нескольких драйверов к одному источнику питания

следует использовать схему подключения «звезда». Не подключайте один драйвер к клеммам питания другого драйвера!

Положительный контакт источника питания подключается к клемме Vcc, отрицательный — κ GND.

Выбор разрешения микрошага и выходного тока драйвера

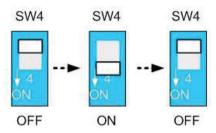
07

Микрошаг и ток фазы являются программируемыми параметрами.

Микрошаговый режим устанавливается DIP-переключателями SW5, SW6, SW7 согласно информации на корпусе драйвера.

Микрошаг	Шагов/оборот (для двигателя 1,8°)	SW5	SW6	SW7
1-512	По умолчанию / программно настраиваемое значение	ON	ON	ON
2	400	OFF	ON	ON
4	800	ON	OFF	ON
8	1600	OFF	OFF	ON
16	3200	ON	ON	OFF
32	6400	OFF	ON	OFF
64	12800	ON	OFF	OFF
128	25600	0FF	OFF	OFF

07. Выбор разрешения микрошага и выходного тока драйвера


Выбор тока фазы осуществляется исходя из требований к крутящему моменту и нагреву двигателя. В связи с тем, что последовательное или параллельное подключение обмоток 8-выводных двигателей существенным образом меняют характеристики цепи, выбор тока также должен обязательно учитывать вид двигателя и схему подключения обмоток. Ток фазы двигателя устанавливается DIP-переключателями SW1, SW2, SW3 согласно таблице на корпусе драйвера или с помощью программного обеспечения драйвера.

Пиковый ток	Действующий ток	SW1	SW2	SW3
	/ программно настраивае- начение (0.1-8.2A)	ON	ON	ON
2.7 A	1.93 A	OFF	ON	ON
3.6 A	2.57 A	ON	OFF	ON
4.6 A	3.29 A	OFF	0FF	ON
5.5 A	3.93 A	ON	ON	OFF
6.4 A	4.57 A	OFF	ON	OFF
7.3 A	5.21 A	ON	0FF	OFF
8.2 A	5.86 A	0FF	0FF	OFF

Примечание. Из-за индуктивности обмоток реальный ток в обмотках может отличаться от установленного значения.

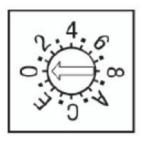
Снижение тока в момент удержания настраивается переключателем SW4: положение ON – ток в момент удержания не снижается, положение OFF – ток снижается. Параметры тока удержания (процент снижения и время) задаются в ПО драйвера ProTuner. По умолчанию ток удержания составляет 50% от установленного тока фазы и снижается до этого значения через 2 секунды после последнего импульса STEP. Благодаря этому уменьшается нагрев двигателя на 36%.

Для автоматической подстройки драйвера под параметры обмоток двигателя при первом включении на выключенном драйвере переместите SW4 в положение OFF, подключите двигатель, включите драйвер, и в течение 1 секунды дважды смените положение переключателя:

Выбор активного фронта сигнала

09

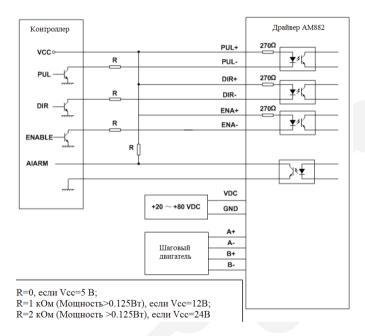
Драйвер может реагировать на восходящий или нисходящий фронты импульсов STEP. Выбор режима задается переключателем SW8:


OFF - по переднему фронту;

ON – по заднему фронту.

10

Выбор предустановленной конфигурации

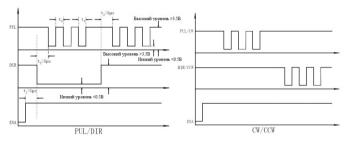


Выбор предустановленных конфигураций Leadshine задается переключателем MOTOR SEL в положениях 0-7. Выбор наилучшей конфигурации рекомендуется осуществлять эмпирическим способом.

Двигатель	Положение переключателя	Двигатель	Положение переключателя
По умолчанию	0	резерв	8
57HS09	1	резерв	9
57HS13	2	резерв	А
57SH22	3	резерв	В
86HS35	4	резерв	С
86HS38	5	резерв	D
86HS45	6	резерв	E
86HS85	7	резерв	F

Типовая схема подключения

Полный комплект оборудования должен включать в себя шаговый двигатель, драйвер шагового двигателя, источник питания и контроллер (генератор импульсов). Типовая схема подключения показана на рисунке ниже.



12

Схема последовательности управляющих сигналов

Для того, чтобы избежать ошибок или отклонений в ходе обработки, сигналы PUL, DIR и ENA должны соответствовать требованиям, показанным на графиках:

Примечания:

- t1: Сигнал ENA должен опережать DIR минимум на 5 мкс. Как правило, ENA+ и ENA- не подключены (NC). Дополнительная информация приведена в разделе "Конфигурации разъема P1".
- t2: Сигнал DIR должен опережать активный фронт PUL на 5 мкс для обеспечения правильного направления;
- t3: Длительность сигнала не менее 2,5 мкс;
- t4: Длительность заднего фронта не менее 2,5 мкс.

Защитные функции и индикация ошибок

13

Для индикации срабатывания защиты драйвера служит красный светодиод. В случае возникновения нескольких ошибок одновременно будет обозначена наиболее приоритетная.

Ошибки обозначаются количеством циклов вкл-выкл. в период 5 сек. Ниже перечислены индикации ошибок в порядке убывания приоритета:

- 1 раз ток превысил допустимый предел;
- 2 раза напряжение превысило допустимый предел (90В);
- 4 раза неправильно подключены фазы двигателя;
- 5 раз произошла аварийная остановка вала двигателя («срыв»).

14

Типичные проблемы и их причины

В случае неправильной работы драйвера необходимо в первую очередь определить, каков характер проблемы - электрический или механический. Следующий шаг - изолирование компонента системы, вызвавшего неисправность. Для этого может потребоваться отключить отдельные компоненты системы и проверить их работу по отдельности. В процессе поиска и устранения неисправностей важно зафиксировать каждый шаг.

Большинство неполадок, влияющих на параметры движения систем управления, связаны с наличием электрических шумов, ошибками программного обеспечения контроллера или неправильным подключением.

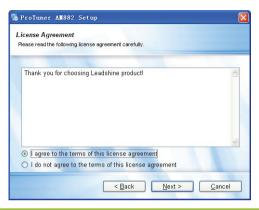
Проблема	Возможная причина				
	Не подключено питание				
	Неверные установки микрошага				
Двигатель не вращается	Неверные установки тока				
	Сработала защита устройства				
	Отсутствует сигнал ENA				
	Управляющий сигнал слаб или с помехами				
	Дребезг на входных контактах				
Двигатель вращается нестабильно	Двигатель подключен неверно				
	Проблемы с обмотками двигателя				
	Выбранный ток фазы или напряжение питания слишком малы				
Ошибка «Аварийный	Ускорение слишком велико				
останов вала» при	Выбранный ток фазы или напряжение слишком малы				
разгоне	Мощность двигателя мала для приложенной нагрузки				
	Плохое охлаждение				
Двигатель или драйвер перегреваются	Установлен слишком высокий ток фазы				
noper possioness	Не используется функция снижения тока при удержании				

Настройка драйвера при помощи ПО ProTuner

15

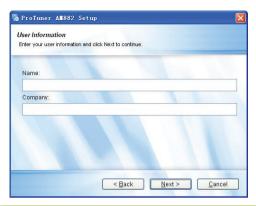
В данном разделе рассматривается технология работы драйвера AM882 с помощью программного обеспечения ProTuner.

Установка программного обеспечения


ProTuner – это программное обеспечение для операционной системы Windows, предназначенное для работы с драйвером шаговых двигателей AM882. Поддерживается работа в версиях Windows 95/98/NT/2000/ XP. Подключаемый ПК должен иметь последовательный порт для связи с драйвером.

Дважды кликните на файле «ProTuner_AM882_Setup_V2.0.exe» для начала установки ПО ProTuner, как показано на рисунке. Нажмите кнопку «Next» для перехода к окну лицензионного соглашения.

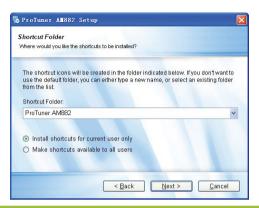
Начало установки программы



Лицензионное соглашение

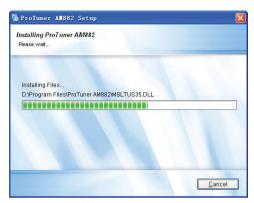
Выберите пункт «"I agree to the terms of this license agreement» и нажмите кнопку «Next» для продолжения установки.

В следующем окне необходимо ввести информацию о пользователе, затем нажать кнопку «Next» для выбора папки установки программы.



Ввод сведений о пользователе

Выбор директории установки программы



Настройка ярлыков запуска программы


Выполните оставшиеся шаги установки программы.

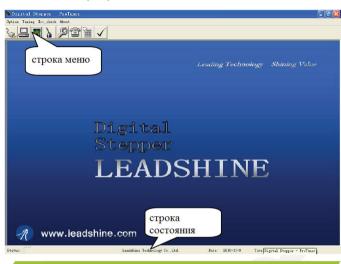
Сводная информация по установке

Установка ProTuner

Завершение установки

Подключение и проверка

Соберите систему перемещения в соответствии с рекомендациями, указанными в предыдущих разделах, и подключите ее к ПК, как показано на рисунке.


Подключение через разъем RS232

При включении питания драйвера загорится и начнет мигать зеленый светодиод. Параметры работы драйвера по умолчанию хранятся в самом устройстве. При отсутствии проблем подключения двигатель блокируется, после чего драйвер готов к работе.

Если при включении питания драйвера начинает мигать красный светодиод, необходимо проверить электропитание, двигатель, обмотки двигателя, после чего заново включить питание. Запустите программу ProTuner и проверьте статус драйвера, кликнув кнопку «Err_check». Если в статусе драйвера отображается «Phase Error», проверьте двигатель и его обмотки, и попробуйте снова запустить систему. Если система по-прежнему не работает, обратитесь в сервисную службу компании-поставщика.

Если красный светодиод выключился, и двигатель в порядке, можно начинать работу с драйвером через программу ProTuner. Однако, рекомендуется ознакомиться со следующей информацией перед началом настройки драйвера.

Описание программного обеспечения

Основное окно программы ProTuner

Панель инструментов ProTuner

Настройка

Настройка программного обеспечения возможна в выпадающих меню «Com Configuration», «Parameters Configuration» и «Exit»:

- Com Configuration: меню настройки подключения.
- Parameters Configuration: меню настройки параметров чтения/записи между драйвером и ProTuner, а также сохранения и загрузки файла конфигурации.
- Exit: настройка выхода из программы.

Окно «Com Configuration»

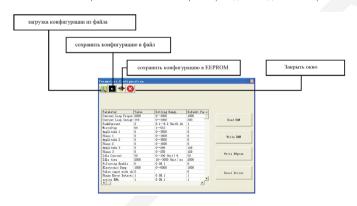
Окно настройки подключения по интерфейсу RS232

Serial Port: выбор порта подключения к драйверу. По умолчанию указан порт COM1.

Baud Rate: скорость передачи в бодах. По умолчанию определен уровень 38400.

Нажмите на кнопку «Open» для установки соединения с указанными параметрами. При установке подключения сохраненные значения параметров драйвера могут быть открыты в ПО ProTuner, или записаны новые параметры на драйвер.

Окно «Parameters Configuration»


В данном окне пользователь может просматривать параметры драйвера, производить их изменения и сохранять параметры обратно на драйвер.

Read RAM: чтение настроек параметров из памяти драйвера.

Write RAM: запись настроек параметров из ProTuner в память драйвера.

Write Eeprom: запись настроек параметров из ProTuner в энергонезависимую память драйвера (Eeprom).

Reset Drive: сброс всех значений параметров до заводских настроек.

Окно настройки параметров



Настройка драйвера

Для настройки работы драйвера можно использовать выпадающие меню «Tuning», «Current Loop» и «SystemConfig».

Current Loop: в данном меню настраивается пропорциональная составляющая Кр и интегральная составляющая Кі контура тока для оптимизации отклика различных двигателей.

Пропорциональная составляющая контура тока Кр: Пропорциональная составляющая отвечает за реакцию системы на ошибки позиционирования. Низкий уровень обеспечивает стабильность системы (отсутствия колебаний), низкий уровень жесткости, и большой уровень ошибок позиционирования под нагрузкой. Высокое значение Кр приводит к росту колебаний и нестабильности системы.

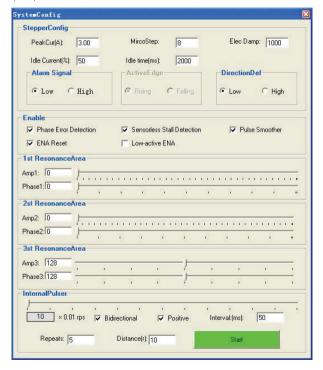

Окно настройки подключения по интерфейсу RS232

Интегральная составляющая контура тока Кі. Установите нужное значение, чтобы понизить разницу между опорным и текущим током. Кі используется, чтобы уменьшить статическую ошибку на постоянном участке. Высокий Кі вызывает вибрацию системы и ухудшает производительность в целом.

Кнопка «Start» используется для запуска отображения отклика шага. Запустите процесс несколько раз при помощи кнопки «Start» для получе-

ния оптимального отклика, и сохраните настройки в энергонезависимой памяти драйвера, выбрав в окне **«Parameters Configuration»** пункт **Write Eeprom.**

Кнопка «Auto» используется для автонастройки параметров Кр и Кі. Эффект от нажатия на кнопку «Auto» соответствует смене положения переключателя SW4 в течение 1 секунды.


Примечание:

При смене двигателя, подключаемого к драйверу, достаточно нажать кнопку «Auto» в меню ProTuner или в течение 1 секунды включить/выключить переключатель SW4. Произойдет автоматическое определение двигателя и корректировка параметров управления.

SystemConfig

В окне SystemConfig настраивается пиковый ток, разрешение микрошага, ток и время удержания, тип команд, активный фронт и регулируется резонанс двигателя. При настройке может использоваться встроенный генератор сигналов.

Окно SystemConfig

PeakCur: пиковый ток. Устанавливается в соответствии с выбранным двигателем в пределах 0.1-8.2A при помощи ProTuner или DIP-переключателей.

MicroStep: разрешение микрошага в пределах от 1 до 512, реализуется при помощи ProTuner или DIP-переключателей.

ElecDamp: Коэффициент электронного демпфирования. Электронное демпфирование ограничивает резонанс системы и предотвращает увеличение амплитуды колебаний. Оптимальное значение зависит от конкретной системы, по умолчанию равно 3000.

Idle Current: ток удержания. Если двигатель простаивает на протяжении времени Idle Time, ток на двигателе уменьшится до установленного уровня [в % от значения PeakCur].

Alarm Signal: настройка рабочего уровня сигнала ошибки.

CommandType: выбор режима управления (PULSE/DIRECTION или CW/CCW).

ActiveEdge: активный фронт. Данная функция неактивна в ПО ProTuner, поскольку для выбора активного фронта используется DIP-переключатель SW8

DirectionDef: определение направления. Установите, какой уровень сигнала (High/Low) будет определять направление перемещения. Данный параметр используется только в режиме PULSE/DIRECTION. По умолчанию направление определяется подключением обмоток двигателя.

Phase Error Detection: активация/деактивация защиты от ошибки подключения питания.

Sensorless Stall Detection: активация/деактивация обнаружения аварийного останова двигателя.

Pulse Smoother: активация/деактивация сглаживающего фильтра сигналов. Используется для борьбы с колебаниями входных сигналов и сглаживания перемещения.

ENA Reset: активация/деактивация использования сигнала ENA для перезагрузки драйвера при возникновении ошибки.

Low-active ENA: Выбор рабочего уровня для входа Enable.

Введение в антирезонанс

Шаговые двигатели отличаются значительным резонансом, что приводит к вибрации и дребезгу. На это тратится значительная часть крутящего момента двигателя, что сказывается на производительности оборудования. Более того, в среднем диапазоне резонанс настолько усиливается, что двигатель теряет синхронизацию и аварийно останавливается.

Драйвер AM882 обеспечивает надежное антирезонансное управление, которое предотвращает вибрации и поддерживает равновесие. Для этого необходима правильная настройка драйвера с учетом общей инерции в системе. При неправильной настройке эффективность данной функции может быть снижена.

Пользователь может включать или отключать эту функцию, устанавливая значения Amp и Phase в окне SystemConfig. Значения Amp и Phase, равные все нулю, отключают эту функцию, в противном случае — включают ее.

1st ResonanceArea: параметры первой зоны резонанса. Обычно располагается в пределах 0.6-1.2 об/с. Amp1 отвечает за регулировку амплитуды колебаний, а Phase1 — за регулировку фазы в первой зоне резонанса. Значения параметров можно вводить как непосредственно, так и при помощи ползунка.

2nd ResonanceArea: параметры второй зоны резонанса. Обычно располагается в пределах 1.2-2.4 об/с. По умолчанию значения Amp2 и Phase2 равны нулю.

3rd ResonanceArea: параметры третьей зоны резонанса. Обычно располагается в пределах 2.4-4.8 об/с. По умолчанию значения Amp3 и Phase3 равны 128.

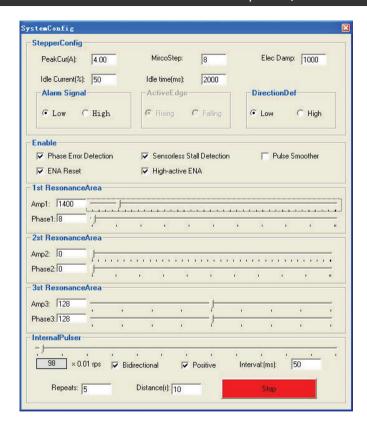
Internal Pulser / Внутренний генератор импульсов

Внутренний генератор импульсов используется для проверки управления движением и настройки антирезонанса. Пользователь может настроить значения скорости, указать направление и повторяемость перемещений.

Bidirectional: при выборе данной опции будет производится перемещение в двух направлениях. В противном случае двигатель будет вращаться только в одном направлении.

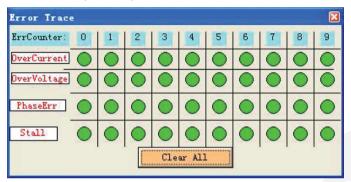
Positive: используется для смены первоначального направления перемешения.

Interval: время остановки перед выполнением повтора движения, в мс. Repeats: количество повторений движения. При выборе двунаправленного движения 1 повтор включает в себя движение вперед и назад.


Distance: расстояние перемещения в одном направлении за 1 оборот. **Start/Stop:** Старт/Стоп перемещения.

Примечание: при настройке скорости с помощью перемещения ползунка, скорость двигателя не изменится моментально. Это связано с тем, что привод только считывает новую скорость при изменении направления. Также будьте осторожны относительно смены начального направления и расстояния перемещения, если двигатель установлен на станке. Рекомендуется устанавливать низкую скорость и малое расстояние, если нет уверенности в правильности направления и расстояния.

Достижение оптимальной производительности


- 1. Проверьте перемещение при помощи кнопки Start/Stop. Найдите скорость возникновения резонанса, плавно перемещая вперед-назад ползунок внутреннего генератора импульсов. Также можно использовать стрелки перемещений.
- 2. Запустите двигатель на скорости появления резонанса и проверьте плавность движения двигателя. Для регулировки плавности используются ползунки значений амплитуд и фаз. Очень важно отсутствие нагрузки на двигателе во время настройки. Это необходимо для обнаружения максимального уровня резонанса. Например, обнаружим скорость появления резонанса 0.98 об/мин. Начнем перемещать ползунок Amp1 вперед, при этом уровень вибрации и шума двигателя будет уменьшаться. Минимальный уровень вибрации будет соответствовать уровню Amp1=1400. Выполним аналогичную процедуру для Phase1. После этого настройка антирезонанса завершена. Нажмите на кнопку Write Eeprom для сохранения настроек в энергонезависимой памяти контроллера.

Настройка первой зоны резонанса (скорость 0.98 об/с)

Err_check: Проверка ошибок. В данном окне отображается о каждой ошибке и хранится история сообщений. Для сброса информации о текущих ошибках используется кнопка «Erase Current Err!», а для сброса информации обо всех аварийных случая — кнопка «Erase All!»

Окно проверки ошибок

OverCurrent: Защита от превышения по току, активируется при длительном превышении установленного предела.

OverVoltage: Защита от превышения по напряжения активируется при превышении уровня 90±1VDC.

PhaseErr: Защита от ошибки подключения, активируется при неверном подключении двигателя.

ErrCounter: Отображает текущие ошибки и их историю.

Erase All!: Очистка истории аварийных сообщений.

About

Пункт меню «About» содержит два окна: «Product Information /Информация о продукте» и «Contact Us / Контакты».

Окно информации о продукте

Окно «Контакты»

Гарантийные обязательства

Гарантийный срок службы составляет 6 месяцев со дня приобретения. Гарантия сохраняется только при соблюдении условий эксплуатации и регламентного обслуживания.

1. Общие положения

- 1.1. В случае приобретения товара в виде комплектующих Продавец гарантирует работоспособность каждой из комплектующих в отдельности, но не несет ответственности за качество их совместной работы (неправильный подбор комплектующих).
- В случае возникновения вопросов Вы можете обратится за технической консультацией к специалистам компании.
- 1.2. Продавец не предоставляет гарантии на совместимость приобретаемого товара и товара, имеющегося у Покупателя, либо приобретенного им у третьих лиц.
- 1.3. Характеристики изделия и комплектация могут изменяться производителем без предварительного уведомления в связи с постоянным техническим совершенствованием продукции.

2. Условия принятия товара на гарантийное обслуживание

2.1. Товар принимается на гарантийное обслуживание в той же комплектности, в которой он был приобретен.

3. Порядок осуществления гарантийного обслуживания

- 3.1. Гарантийное обслуживание осуществляется путем тестирования (проверки) заявленной неисправности товара.
- 3.2. При подтверждении неисправности проводится гарантийный ремонт.

4. Гарантия не распространяется на стекло, электролампы, стартеры и расходные материалы, а также на:

4.1. Товар с повреждениями, вызванными ненадлежащими условиями транспортировки и хранения, неправильным подключением, эксплуатацией в нештатном режиме либо в условиях, не предусмотренных производителем (в т.ч. при температуре и

влажности за пределами рекомендованного диапазона), имеющий повреждения вследствие действия сторонних обстоятельств (скачков напряжения электропитания, стихийных бедствий и т.д.), а также имеющий механические и тепловые повреждения.

- 4.2. Товар со следами воздействия и (или) попадания внутрь посторонних предметов, веществ (в том числе пыли), жидкостей, насекомых, а также имеющим посторонние надписи.
- 4.3. Товар со следами несанкционированного вмешательства и (или) ремонта (следы вскрытия, кустарная пайка, следы замены элементов и т.п.).
- 4.4. Товар, имеющий средства самодиагностики, свидетельствующие о ненадлежащих условиях эксплуатации.
- 4.5. Технически сложный Товар, в отношении которого монтажносборочные и пуско-наладочные работы были выполнены не специалистами Продавца или рекомендованными им организациями, за исключением случаев прямо предусмотренных документацией на товар.
- 4.6. Товар, эксплуатация которого осуществлялась в условиях, когда электропитание не соответствовало требованиям производителя, а также при отсутствии устройств электрозащиты сети и оборудования.
- 4.7. Товар, который был перепродан первоначальным покупателем третьим лицам.
- 4.8. Товар, получивший дефекты, возникшие в результате использования некачественных или выработавших свой ресурс запасных частей, расходных материалов, принадлежностей, а также в случае использования не рекомендованных изготовителем запасных частей, расходных материалов, принадлежностей.

Le	2	Ы	_	h	in	Δ	Δ	м	R	R	b

И	признан	годным	для экспл	іуатации.		

Изготовлен и принят в соответствии с обязательными требованиями действующей технической документации

№ партии:		отк	
-----------	--	-----	--

Обращаем Ваше внимание на то, что в документации возможны изменения в связи с постоянным техническим совершенствованием продукции. Последние версии Вы всегда можете скачать на нашем сайте www.purelogic.ru

www.purelogic.ru

8 800 555-63-74 бесплатные звонки по РФ

Контакты

- +7 (495) 505-63-74 Москва +7 (473) 204-51-56 - Воронеж +7 (812) 425-17-35 - Санкт-Петербург
- 394033, Россия, г. Воронеж, Ленинский пр-т, 160 офис 149
- Пн-Чт: 8.00–17:00 Пт: 8.00–16.00 Перерыв: 12.30–13.30
- @ info@purelogic.ru