EU9 Single Phase Electrical Parameters Measuring Meter User's Manual

Features:

- ⊙ Accuracy: ±0.5%F.S
- \odot Can measure 7 electrical parameters : voltage, current, active power, reactive power, power factor, KWH, apparent power , etc.
- ⊙Input and output are completely isolated .
- \odot With high/low limit settable alarms of voltage / current / active power / reactive power / power factor / KWH / apparent power .
- \odot With 4-20mA analog output of voltage / current / active power / reactive power / power factor / apparent power .
- ⊙With RS485 communication interface, Modbus RTU communication protocol
- ⊙Can measure true/effective value .
- \odot Display switch and menu setting can operated conveniently, and with power off protection for runnning status and KWh .

Safe Caution

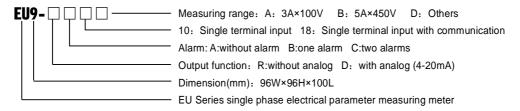
Please read the manual carefully before you use the meter!

Please comply with the below important points:

▲ Warning An accident may happen if the operation does not comply with the instruction.

⚠ Notice An operation that does not comply with the instruction may lead to product damage.

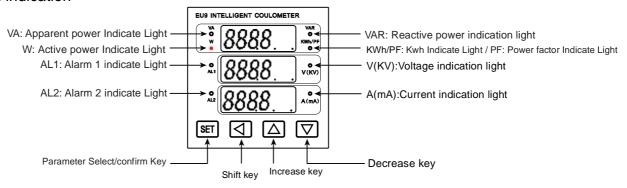
* The instruction of the symbol in the manual is as below:


An accident danger may happen in a special condition.

- 1.A safty protection equipment must be installed or please contact with us for the relative information if the product is used under the circumstance such as nuclear control, medical treatment equipment, automobile, train, airplane, aviation, entertainment or safty equipment, etc. Otherwise, it may cause serious loss, fire or person injury.
- 2.A panel must be installed, otherwise it may cause creepage (leakage).
- 3.Do not touch wire connectors when the power is on, otherwise you may get an electric shock.
- **4.**Do not dismantle or modify the product. If you have to do so, please contact with us first. Otherwise it may cause electric shock and fire.
- **5.**Please check the connection number while you connect the power supply wire or input signal, otherwise it may cause fire.

- 1. This product cannot be used outdoors. Otherwise the working life of the product will become shorter, or an electric shock accident may happen.
- 2. When you connect wire to the power input connectors or signal input connectors, the moment of the No.20 AWG (0.50 mm2) screw tweaked to the connector is 0.74n.m 0.9n.m. Otherwise the connectors may be damaged or get fire.
- **3.** Please comply with the rated specification. Otherwise it may cause fire after the working life of the product becomes shorter.
- **4**.Do not use water or oil base cleaner to clean the product. Otherwise it may cause electric shock or fire, and damage the product.
- **5.**This product should be avoid working under the circumstance that is flammable, explosive, moist, under sunshine, heat radiation and vibration. Otherwise it may cause explosion.
- 6. In this unit it must not have dust or deposit, otherwise it may cause fire or mechanical malfunction.
- **7.** Do not use gasoline, chemical solvent to clean the cover of the product because such solvent can damage it. Please use some soft cloth with water or alcohol to clean the plastic cover.

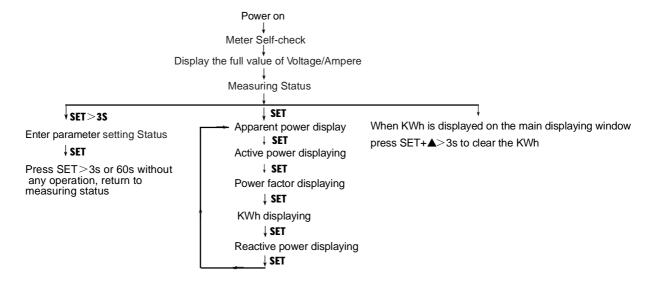
1.Code Illustration

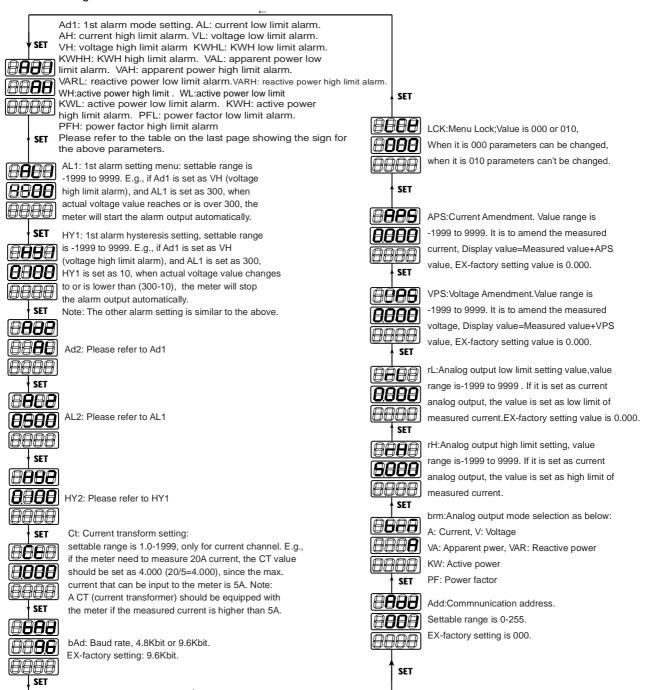


Code	Alarm	Analog	Communication	Input range
EU9-A10B	without	without	without	
EU9-RB10B	one	without	without	B: 5Ax450V
EU9-RC10B	two	without	without	D: Other code need
EU9-RC18B	two	without	RS485	to be ordered
EU9-DA10B	without	4-20mA	without	to be ordered
EU9-DC10B	two	4-20mA	without	
EU9-DC18B	two	4-20mA	RS485	

2. Main Technical Parameter

Measuring function	voltage, current, active power, reactive power, power factor, KWH, apparent power
Input impedance	Voltage input impedance:≥300KΩ(450V) current input impedance:≤0.02Ω(when is direct input is 0~5A)
Direct input range	Voltage:AC 6-450V Current:AC 0.015-5A
Display	Dual line LED display
СТ	1.0-1999 settable
Accuracy	Voltage:±0.5%F.S±2Digit Current:±0.5%F.S±2Digit
Sampling speed	About 2 times /s
Power supply	AC/DC 100~240V
Dielectric strength	DC 2000V/1min
Communication	RS485 communication interface ,adopt Modbus RTU protocol
Analog	DC 4-20mA analog output , accuracy :±0.5%F.S loading capacity ≤600Ω
Insulated impedance	100ΜΩ
Ambient	0~50°C,relative humidity ≤85%RH
Dimension(mm)	96W*96H*100L

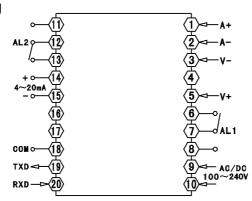

3. Panel indication


NO	Panel indication	Illustration
1	LED	Measuring Value/Parameter Code Display
2	AL1	Alarm 1 indicate Light
3	AL2	Alarm 2 indicate Light
4	V (KV)	Voltage V indication light (Normal on) /KV indication light (flick)
5	A (mA)	Current A Indicate Ligth (Normal on) / Current mA Indicate Light (fick)
6	VA	Apparent Power Indicate Light (Normal on) /Indication light flicking is KVA
7	VAR	Reactive power VAR indication light (Normal on) /Indication light flicking is KVAR
8	KWh/PF	Power factor Indicate Light (flick)/Kwh Indicate Light (Normal on)
9	W	Active power W Indicate Light (Normal on)/Indication liight flicking is KW
10	SET	Parameter Select/comfirm Key
11		Shift key
12	▼	Decrease key
13	A	Increase key

Note: When the lights of active power/apparent power/reactive power/KWh/power factor on the panel be normal on or flicking, correspondingly the measured prameter value will be displayed on the present displaying window.

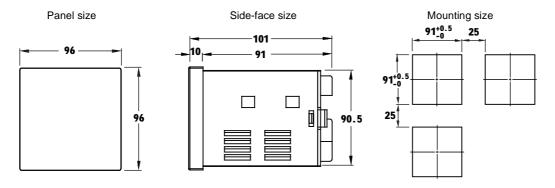
4. Operation Process

Parameter setting


The instruction for the above menu operation and setting is as below:

- 1). Press SET key for 3 seconds the meter will show the parameter setting menu.
- 2). Press SET key to select the parameter needing modified ,press ✓ to make the parameter flick ,and press ✓ to set needed value and press SET key to confirm the modifying . press ✓ to shift the decimal point, press SET key to go on to another menu.
- 3). Under setting status, long press SET>3s can return to measuring status.
- 4). Way of clearing the KWh value: when the main window displays the KWh, press SET+▲>3s can clear the value

5. Actual display parameters of each alarm type


NO	Display Parameter	High Alarm	Low Alarm
1	Current	AH	AL
2	Voltage	ĽΗ	<u>Lif</u>
3	Power Factor	PFH	PFL
4	Reactive Power	":A-H	"R-L
5	Apparent power	"AH	<u>"</u> RL
6	Active Power	5H	<u> </u>
7	KWh	FiHH	F5HF

6.Connecting Drawing

Note: If there is any change, please subject to the drawing on the actual meter!

7.Dimension

8.Caution

- 1) Available ambient temperature is $0{\sim}50{^\circ\!}\mathrm{C}_{+}$ relative humidity is below 85% .
- 2) It should be adjusted every year.
- 3) Avoid vibration and crash. Don't use it under the circustance which is over dusty / harmful chemicals and gas.
- **4)** If the meter is not for using for a long time, please connect power with our meter once for each three month, and not less than 4 hours each time .
- 5) Don't explose it in the sunshine long term ,the available store temperature is $0\sim50^{\circ}$ C , humidity should be below 60% Please make sure not to contact with gasoline, chemical solvent.

9. Communication protocol

EU9 series meter adpots Modbus RTU communication protocol, RS485 half duplex communication, read function code 0x03, write function code 0x10, adpots 16 bits CRC check, the meter does not feedback when check error

Data frame format:

Start bit	Data bit	Stop bit	Check bit
1	8	1	No

Communication abnormal solution:

When abnormal answer, the highest bit of function code will be set to 1. For example, if the request function code from master unit is 0x04, the return function code from the meter is 0x84.

Error type code

0x01---Function code error: The meter does not support the function code it receives.

0x02---Data position error: The data position assigned by master unit is out of the range of the meter

0x03---Data value error: The data value sent from master unit is out of the range of the meter

9.1. Read multi-register

For example, master unit reads float data AL1 (1st alarm value 241.5)

The address code of AL1 is 0x0000, because AL1 is floating data(4 byte), it covers 2 data registers. According to IEEE-754, the standard hexadecimal memory code of decimalist float data 241.5 is 0x00807143.

Master unit request (Read multi-register)										
1	2 3 4 5 6 7 8									
Meter address	Function code	Start address High bit	Start address Low bit			CRC code high bit				
0x01	0x03	0x00	0x00	0x00	0x02	0xC4	0x0B			

	Slave unit normal answer (Read multi-register)									
1	1 2 3 4 5 6 7 8 9									
Meter address	Function code	Data byte number	Data 1 High bit	Data 1 Low bit	Data 2 High bit	Data 2 Low bit	CRC code Low bit	CRC code high bit		
0x01	0x03	0x04	0x00	0x80	0x71	0x43	0x9E	0x7A		

Function code abnormal answer:(For example, master unit request function code is 0x04)

Slave unit abnormal answer(Read multi-register)								
1	1 2 3 8 9							
Meter address	Function code	Error code	CRC code Low bit	CRC code high bit				
0x01	0x84	0x01	0x82	0xC0				

9.2. Write multi-register

For example: Master unit reads float data HY1(1st alarm hysteresis value 20.5). The address code of HY1 is 0x0001, because HY1 is float data (4 bytes), seizes 2 data registers. According to IEEE-754 standard, the hexadecimal memory code of decimalist float data 20.5 is 0x0000A441.

	Master unit request (Write multi-register)											
1	2	3	4	5	6	7	8	9	10	11	12	13
Meter address	Function code	Start address High bit	Start address Low bit	Data byte length High bit	Data byte length Low bit	Data byte length	Data 1 high bit	Data 1 low bit	Data 2 high bit	Data 2 low bit	CRC code Low bit	CRC code high bit
0x01	0x10	0x00	0x01	0x00	0x02	0x04	0x00	0x00	0xA4	0x41	0x88	0x93

	Slave unit normal answer (Write multi-register)										
1	1 2 3 4 5 6 7 8										
Meter address	Function code	Start address High 8 bit	Start address Low 8 bit	Data byte length High bit	Data byte length Low bit		CRC code high bit				
0x01	0x10	0x00	0x01	0x00	0x02	0x10	0x08				

Data position error answer:(For example, master unit request write address index is 0x0050)

Slave unit abnormal answer (Write multi-register)								
1 2 3 8 9								
Meter address	Meter address Function code Error code CRC code Low bit CRC code high							
0x01	0x90	0x02	0xCD	0xC1				

9.3. EU9 parameter address reflection table

Note: address code is the index of variable array

No.	Address code	Variable name	Byte length	Display range	Read/Write allow	Remark
0	0x0000	1st alarm value AL1	2	-1999~9999	R/W	
1	0x0001	1st alarm hysteresis HY1	2	-1999~9999	R/W	
2	0x0002	2nd alarm value AL2	2	-1999~9999	R/W	
3	0x0003	2nd alarm hysteresis HY2	2	-1999~9999	R/W	
4	0x0004	Current transform CT	2	-0.000~9999	R/W	
5	0x0005	High limit value of analog rH	2	-1999~9999	R/W	
6	0x0006	Low limit value of analog rL	2	-1999~9999	R/W	
7	0x0007	Voltage amend value VPS	2	-1999~9999	R/W	
8	0x0008	Current amend valueAPS	2	-1999~9999	R/W	
9	0x0009	Full range of voltage FSV	2	0.000~9999	R	
10	0x000A	Full range of current FSA	2	0.000~9999	R	
11	0x000B	Voltage effective value	2	0.000~9999	R	
12	0x000C	Current effective value	2	0.000~9999	R	
13	0x000D	Power factor	2	-1.0~1.0	R	
14	0x000E	Active power	2	0.000~9999	R	
15	0x000F	Reactive power	2	0.000~9999	R	
16	0x0010	Apparent power	2	0.000~9999	R	
17	0x0011	KWh	2	0.000~9999	R	
		F	Reservat	tion		
20	0x0014	Dual-line LED display parameter	1	0~6		Note ①
21	0x0015	1st alarm mode Ad1	1	0~7		Note 2
22	0x0016	2nd alarm mode Ad2	1	0~7		Note 2
23	0x0017	Analog mode brM	1	0~4		Note ③
24	0x0018	Menu lock	1	0~255		
25	0x0019	Baud rate bAd	1	0~1		Note 4
26	0x001A	Address of the meter ADD	1	0~255		
27	0x001B	Measuring status indicate	1	0~255		Note ®
28	0x001C	Name of the meter	1	0xD8		
	I	R	eservat	ion	1	

R : Read only R/W : Read & Write

Note ① : Display parameter of the second line of LED

7	6	5	4	3	2	1	0
	W	KWH	PF	A	VA	V	VAR

Note 2 : Alarm mode

High limit alarm	Communication data value	Low limit alarm	Communication data value	Alarm item	
VH	0	VL	1	Voltage	
AH	2	AL	3	Current	
PFH	4	PFL	5	Power factor	
KWH	6	KWL	7	Active power	
VArH	8	VArL	9	Reactive power	
VAH	10	VAL	11	Apparent power	
КWНН	12	KWHL	13	KWh	

Note ③ :Analog mode

Communication data value	0	1	2	3	4	5
Menu display	V	A	PF	KW	VAr	VA
Analog item	Voltage value	Current value	Power factor	Active power	Reactive power	Apparent power

Note 4 :Baud rate

Communication value	0	1
Menu display	4.8	9.6

Note (5) Measuring status indication

D7	D 6	D5	D4	D3	D2	D1	D0
AL2	AL1	VAR	V	VA	A	PF(KWh)	W

The program of 4 byte character code float data converts to decimalist float data

```
float BytesToFloat(unsigned char*pch)
{
    float result;
    unsigned char *p;
    p=(unsigned char*)&result;
    * p=*pch;*(p+1)=*(pch+1);*(p+2)=*(pch+2);*(p+3)=*(pch+3);
    return result;
}
```

The program of decimalist float data converts to 4 byte character code as IEEE-754 standards .

```
void FloatToChar(float Fvalue, unsigned char*pch)
{
    unsigned char*P;
    p=(unsigned char*)&Fvalue;
    *pch=*p;*(pch+1)=*(p+1);*(pch+2)=*(p+2);*(pch+3)=*(p+3);
}
```

Program of obtaining 16 digits CRC checking code

```
unsigned int Get_CRC (uchar*pBuf, uchar num)
{
    unsigned i,j;
    unsigned int wCrc=0xFFFF;
    for(i=0;i<num;i++)
{
     wCrc^=(unsigned int)(pBuf[i]);
     for(j=0;j<8;j++)
{
     if(wCrc &1){wCrc>>=1;     wCrc=0xA001;}
     else wCrc>>=1;
     }
     return wCrc;
}
```