

NVBDH+/NVBDL+ Драйверы бесколлекторных электродвигателей

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

01. Общие сведения	2
1.1 Краткое описание продуктов	2
1.2 Технические характеристики	2
1.3 Габаритные размеры	3
1.4 Уведомления и предупреждения	7
02. Схемы подключения	7
2.1 Описание схемы подключения	7
2.2 Подключение NVBDH+	8
2.3 Подключение NVBDL+	10
03. Методы настройки	12
3.1 Характеристики панели	12
3.2 Настройка параметров панели и LED дисплея	14
3.3 Характеристика параметров	15
04. Гарантийные обязательства	17

01

Общие сведения

1.1 Краткое описание продуктов

Драйверы бесколлекторных BLDC шпинделей NVBDH+/NVBDL+ разработаны для использования в экономичных гравировальных станках, оснащающихся двигателями постоянного тока. При помощи усовершенствованной технологии цифровой обработки сигнала (DSP) драйверы способны выдавать больший крутящий момент и осуществлять более точную настройку скорости двигателя.

Использовав идею инвертора, была создана независимая съемная панель. Пользователь может снять эту панель с драйвера и установить на шкафу управления. При помощи съемной панели удобно настраивать различные параметры, управлять скоростью двигателя, его запуском и остановкой.

Драйвер NVBDH+ предназначен для управления шпинделями, оснащенными датчиком Холла и цангой ER8, драйвер NVBDL+ управляет работой шпинделей без датчика Холла и оснащенных цангой ER11.

1.2 Технические характеристики

- высокое качество исполнения, конкурентная цена;
- основной модуль управления DSP (цифровой сигнальный процессор);
- отсутствуют потери тока при отсутствии движения двигателя;
- диапазон напряжения постоянного тока 24-60 В;
- съемная панель;
- максимальная мощность двигателя 600 Вт;
- З возможных варианта регулировки: при помощи потенциометра на панели, внешнего аналогового сигнала, внешнего сигнала ШИМ;

• максимальная скорость вращения управляемого двигателя — 12000 оборотов в минуту;

- разъем тестирования скорости для проверки реальной скорости;
- защита от перегрузок по току, напряжению, заклинивания двигателя;
- входной сигнал TTL-совместимый.

1.3 Габаритные размеры

Внешний вид драйвера NVBDH+ показан на рисунках 1.1 — 1.3. Внешний вид драйвера NVBDL+ показан на рисунках 1.4 — 1.6.

Рис. 1.1 Внешний вид драйвера NVBDH+

Рис. 1.2 Внешний вид драйвера NVBDH+ со снятой панелью

01. Общие сведения

Драйверы бесщеточных серводвигателей NVBDH+/NVBDL+

Рис. 1.4 Внешний вид драйвера NVBDL+

Рис. 1.5 Внешний вид драйвера NVBDL+ со снятой панелью

Рис. 1.6 Внешний вид драйвера NVBDL+ с подключенным бесколлекторным BLDC шпинделем.

www.purelogic.ru

5

Драйверы NVBDH+ и NVBDL+ имеют одинаковые механические размеры. Возьмем в качестве примера NVBDL+. Габаритные размеры драйвера: 118*76*33 мм, как показано на рисунке 1.7.

Рис. 1.7 Габаритные размеры драйвера NVBDL+.

Рис. 1.8 Размеры установочных отверстий на обратной стороне драйвера

1.4 Уведомления и предупреждения

Запрещено хранить и использовать оборудование в условиях повышенной влажности. Это может привести к короткому замыканию

Используйте надлежащие источники питания и двигатели

Обратите особое внимание на подключения источника питания. Соблюдайте полярность при подключении драйвера к источнику питания и датчика Холла к драйверу

Схемы подключения

2.1 Описание схемы подключения

Драйвер NVBDL+ отличается от драйвера NVBDH+ только отсутствием подключения датчика Холла. Описание подключения драйверов NVBDH+ и NVBDL+ приведено в таблице 2.1. Зеленым цветом выделено подключение датчика Холла для NVBDH+.

Таблица 2.1 Описание подключения драйверов NVBDH+ и NVBDL+

Обозначение	Описание		Тип
+	VDC	Диапазон входного напряжения составляет 24-60 В. Если рабочее	NVBDH+/NVBDL+
-	GND	48 В, входное напряжение драйвера указываем 48 В	NVBDH+/NVBDL+
U	Фаза шпинделя U		NVBDH+/NVBDL+
V	Фаза шпинделя V		NVBDH+/NVBDL+
W	Фаза шпинделя W		NVBDH+/NVBDL+
H+	Положительный контакт питания датчика Холла, напряжение 12 В		NVBDH+
H-	Заземление датчика Холла		NVBDH+

;;:: purelogic

HW	Вход сигнала W датчика Холла	NVBDH+
HV	Вход сигнала V датчика Холла	NVBDH+
HU	Вход сигнала U датчика Холла	NVBDH+
CW	Разъем включения вращения шпинделя по часовой стрелке	NVBDH+/NVBDL+
CCW	Разъем включения вращения шпинделя против часовой стрелки	NVBDH+/NVBDL+
PWM	Вход управления скоростью ШИМ	NVBDH+/NVBDL+
FG	Выход проверки скорости шпинделя	NVBDH+/NVBDL+
VSI	Вход аналоговой настройки скорости	NVBDH+/NVBDL+
GND	Общий сигнал управления «Земля»	NVBDH+/NVBDL+

2.2 Подключение NVBDH+

Настройка скорости может быть осуществлена при помощи внешнего аналогового входа, внешнего ШИМ и потенциометра панели. Функция «Старт / Стоп» также может управляться с помощью внешнего аналогового входа или клавиш панели, возможна комбинация способов управления.

В данном разделе мы рассмотрим 3 варианта подключения драйвера: кнопки управления скоростью и «Старт/Стоп» на панели; внешние аналоговые входы управления скоростью и режимом «Старт/Стоп»; внешний аналоговый вход ШИМ управления скоростью и внешний аналоговый вход управления режимом «Старт/Стоп». Сперва рассмотрим версию драйвера с датчиком Холла NVBDH+.

1 режим: кнопки управления скоростью и «Старт/Стоп» на панели. Данный вариант подключения показан на рисунке 2.1.

2 режим: внешние аналоговые входы управления скоростью и режимом «Старт/Стоп» (рисунок 2.2). VSI – аналоговое устройство управления скоростью, подключается к разъему аналогового выхода контроллера; разъемы включения вращения шпинделя по часовой стрелке (CW) и против часовой стрелки (CCW) показаны на рисунке 2.2.

3 режим: внешний аналоговый вход ШИМ управления скоростью и внешний аналоговый вход управления режимом «Старт/Стоп» (рисунок 2.3). В режиме управления ШИМ подключите разъем ШИМ драйвера NVBDH+ к выходному разъему ШИМ контроллера.

2.3 Подключение NVBDL+

Драйвер NVBDL+ управляет шпинделями, не оснащенными датчиком Холла, поэтому его подключение проще, чем подключение NVBDH+. Здесь также возможны 3 варианта подключения.

1 режим: кнопки управления скоростью и «Старт/Стоп» на панели. Данный вариант подключения показан на рисунке 2.4. В этом режиме, если управляющей системе необходимо снимать данные скорости двигателя, то разъемы драйвера FG и GND необходимо подключать к разъему сбора показаний датчиков и к разъему GND контроллера. Три толстых кабеля желтого, зеленого и синего цвета отвечают за U\V\W фазы двигателя, подключаются к соответствующим разъемом драйвера. Датчик Холла не подключается.

скоростью и «Старт/Стоп», расположенными на панели.

2 режим: внешние аналоговые входы управления скоростью и режимом «Старт/Стоп» (рисунок 2.5).

VSI – аналоговое устройство управления скоростью, подключается к разъему аналогового выхода контроллера; разъемы включения вращения шпинделя по часовой стрелке (CW) и против часовой стрелки (CCW) показаны на рисунке 2.5.драйвера NVBDH+ к выходному разъему ШИМ контроллера.

Рис. 2.5 Подключение драйвера NVBDL+ с внешними аналоговыми входами управления скоростью и режимом «Старт/Стоп»

3 режим: внешний аналоговый вход ШИМ управления скоростью и внешний аналоговый вход управления режимом «Старт/Стоп» (рисунок 2.6). В режиме управления ШИМ подключите разъем ШИМ драйвера NVBDL+ к выходному разъему ШИМ контроллера.

Рис. 2.6 Подключение драйвера NVBDH+ с внешним аналоговым входом ШИМ управления скоростью и внешним аналоговым входом управления режимом «Старт/Стоп»

03

Методы настройки

3.1 Характеристики панели

Поскольку параметры панелей драйверов NVBDH+ и NVBDL+ идентичны, в данном разделе будет дано описание только одной из них. Внешний вид и параметры панели представлены на рисунке 3.1 и в таблице 3.1.

Рис. 3.1 Внешний вид панели драйвера

Таблица 3.1 — Параметры панели драйвера

Nº	Обозначение	Наименование	Обозначение
1	RUN	Старт	Нажмите эту кнопку для запуска двигателя
2	STOP	Стоп	Нажмите эту кнопку для остановки двигателя
3		Уменьшить значение параметра	Предыдущий параметр, или уменьшить значение параметра
4	S	Выбор	Нажмите однократно на кнопку и введите значение параметра; длительное нажатие на кнопку приведет к выходу из меню текущего значения параметра
5		Увеличить значение параметра	Следующий параметр, или увеличить значение параметра
6	diamoninh as to g	Потенциометр управления скоростью	Настройка скорости двигателя (вращение по часовой стрелке — увеличить скорость, вращение против часовой стрелки — уменьшить скорость)

13

3.2 Настройка параметров панели и LED дисплея

::::ourelooic

1. При включении драйвера зуммер издаст однократный сигнал, и загорится светодиодная панель, что будет свидетельствовать о переходе драйвера в режим ожидания.

2. В режиме ожидания нажмите на клавишу «S» для перехода к странице настройки параметров, в первой ячейке отобразится символ «P», а вторая будет мигать. Затем используйте кнопки со стрелками для увеличения или уменьшения выбранного параметра. Настраиваемый диапазон — от P0 до P5, Po означает выход.

P1

3. После выбора параметра еще раз нажмите клавишу «S» для перехода к настройкам параметра. В первой ячейке при этом отобразится «P», вторая ячейка продолжит мигать, в третьей ячейке отобразится «-», четвертая ячейка будет мигать и отображать значение параметра.

4. После установления значения параметра нажмите клавишу «S» для подтверждения и возврата к предыдущему меню.

5. После завершения настройки всех параметров в первом меню при помощи стрелок выберите надпись «Ро».

После этого нажмите на клавишу «S», чтобы выйти из меню в режим ожидания.

6. В первом или втором меню настроек, если в течении 15 секунд не совершается никакого действия, система выйдет из меню настроек и вернется в режим ожидания.

7. В режиме ожидания нажмите на клавишу «START», двигатель начнет работать, при этом на дисплее отобразятся сведения о скорости двигателя. Необходимо учитывать, что фактическая скорость = отображаемой на дисплее скорости*10. Например, когда на дисплее отображается 1020, фактическая скорость двигателя составляет 10200 оборотов в минуту.

4 опорные точки LED-дисплея мигают по очереди, показывая, что двигатель работает правильно.

3.3 Характеристика параметров

1. Режим настройки скорости РО (значение по умолчанию = 0)

Значение параметра	Характеристика
0	Управление скоростью при помощи потенциометра на панели
1	Управление скоростью при помощи внешней ШИМ
2	Внешнее аналоговое управление скоростью

2. Режим управления параметрами старта Р1 (значение по умолчанию = 0)

Значение параметра	Характеристика
0	Управление стартом при помощи клавиши на панели
1	Переключение направлений вращения по/против часовой стрелки

3. Диапазон управления внешним напряжением P2 (значение по умолчанию = 1)

Значение параметра	Диапазон
0	0-5 B
1	0-10 B

4. Эффективное напряжение ШИМ РЗ (значение по умолчанию = 1)

Значение параметра	Характеристика
0	Эффективный низкий уровень, выход 0 В
1	Эффективный высокий уровень, выход 5 В постоянного тока

5. Направление старта вращения двигателя при запуске с панели Р4 (значение по умолчанию = 0)

Значение параметра	Характеристика
0	Вращение по часовой стрелке
1	Вращение против часовой стрелки

6. Умножение частоты обратной связи сигнала скорости Р5 (значение по умолчанию = 1)

Значение параметра	Характеристика
1	1 оборот — 1 сигнал
2	1 оборот — 2 сигнала
3	1 оборот — 3 сигнала
4	1 оборот — 4 сигнала

Гарантийные обязательства

Гарантийный срок службы составляет 12 месяцев со дня приобретения. Гарантия сохраняется только при соблюдении условий эксплуатации и регламентного обслуживания.

1. Общие положения

1.1. В случае приобретения товара в виде комплектующих Продавец гарантирует работоспособность каждой из комплектующих в отдельности, но не несет ответственности за качество их совместной работы (неправильный подбор комплектующих. В случае возникновения вопросов Вы можете обратиться за технической консультацией к специалистам компании).

1.2. Продавец не предоставляет гарантии на совместимость приобретаемого товара и товара имеющегося у Покупателя, либо приобретенного им у третьих лиц.

1.3. Характеристики изделия и комплектация могут изменяться производителем без предварительного уведомления в связи с постоянным техническим совершенствованием продукции.

2. Условия принятия товара на гарантийное обслуживание

;;;:purelogic

2.1. Товар принимается на гарантийное обслуживание в той же комплектности, в которой он был приобретен.

3. Порядок осуществления гарантийного обслуживания

3.1. Гарантийное обслуживание осуществляется путем тестирования (проверки) заявленной неисправности товара.

3.2. При подтверждении неисправности проводится гарантийный ремонт.

4. Гарантия не распространяется на стекло, электролампы, стартеры и расходные материалы, а также на:

4.1. Товар с повреждениями, вызванными ненадлежащими условиями транспортировки и хранения, неправильным подключением, эксплуатацией в нештатном режиме либо в условиях, не предусмотренных производителем (в т.ч. при температуре и влажности за пределами рекомендованного диапазона), имеющий повреждения вследствие действия сторонних обстоятельств (скачков напряжения электропитания, стихийных бедствий и т.д.), а также имеющий механические и тепловые повреждения.

4.2. Товар со следами воздействия и (или) попадания внутрь посторонних предметов, веществ (в том числе пыли), жидкостей, насекомых, а также имеющим посторонние надписи.

4.3. Товар со следами несанкционированного вмешательства и (или) ремонта (следы вскрытия, кустарная пайка, следы замены элементов и т.п.).

4.4. Товар, имеющий средства самодиагностики, свидетельствующие о ненадлежащих условиях эксплуатации.

4.5. Технически сложный Товар, в отношении которого монтажносборочные и пуско-наладочные работы были выполнены не специалистами Продавца или рекомендованными им организациями, за исключением случаев прямо предусмотренных документацией на товар.

4.6. Товар, эксплуатация которого осуществлялась в условиях, когда электропитание не соответствовало требованиям производителя, а также при отсутствии устройств электрозащиты сети и оборудования. 4.7. Товар, который был перепродан первоначальным покупателем третьим лицам.

4.8. Товар, получивший дефекты, возникшие в результате использования некачественных или выработавших свой ресурс запасных частей, расходных материалов, принадлежностей, а также в случае использования не рекомендованных изготовителем запасных частей, расходных материалов, принадлежностей.

Изготовлен и принят в соответствии с обязательными требованиями действующей технической документации и признан годным для эксплуатации.

№ партии:	отк:	

Обращаем Ваше внимание на то, что в документации возможны изменения в связи с постоянным техническим совершенствованием продукции. Последние версии Вы всегда можете скачать на нашем сайте <u>www.purelogic.ru</u>

