research & development

RFL-C1000/B/15/W Лазерный источник

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

01.	. Информация по безопасности .								2
02.	. Описание станка								6
03.	Установка							.1	1
04.	. Эксплуатация оборудования							.1	7
05.	. Гарантийные обязательства							.3	8

!

;;;:purelogic

Более подробную информацию по использованию и настройке нашей продукции Вы найдете на <u>www.purelogic.ru</u>

Информация по безопасности

Данное руководство содержит важную информацию о безопасности и особенностях эксплуатации оборудования. Внимательно прочитайте руководство перед началом работы. Для обеспечения безопасной работы оборудования и оптимальной производительности следуйте указаниям и предупреждениям, указанным в руководстве.

1.1 Используемые обозначения

ПРЕДУПРЕЖДЕНИЕ: Содержит описание опасностей, которые могут привести к серьезным травмам или смерти.

ВНИМАНИЕ: Содержит описание опасностей, которые могут привести к травмам или повреждению оборудования.

1.2 Классификация лазеров

Данная серия лазеров относится к 4 классу лазерных инструментов высокой мощности, в соответствии со стандартами Еврокомиссии EN 60825-1, статья 9. Данный продукт является источником невидимого лазерного излучения с длиной волны 1080 нм и мощностью излучения выше 1000Вт. Прямое или отраженное излучение такой мощности при попадании в глаза или на кожу может привести к серьезным травмам. Несмотря на то, что излучение является невидимым, лазерный луч может привести к необратимым повреждениям сетчатки и/или роговицы глаза. Поэтому при работе с лазером всегда следует использовать защитные очки.

ПРЕДУПРЕЖДЕНИЕ: При работе с оборудованием обязательно нужно использовать защитные очки. Очки подбираются с учетом длины волн, излучаемых лазером. Проверьте маркировку станка (Рисунок 1) и соответствие защитного оборудования (например, корпуса, смотровых окон, защитных очков) выходной мощности и длине волны лазера.

1.3 Маркировка станка

Рис.1 — Расположение маркировки

На рисунке 1 показано размещение маркировки продукта с указанием требований безопасности.

4

www.purelogic.ru

1.4 Оптическая безопасность

Наличие пыли на конце узла коллиматора может привести к возгоранию линз и повреждению лазера.

ВНИМАНИЕ: При использовании на выходе лазера линз с антибликовым покрытием убедитесь в их качестве и чистоте.

ВНИМАНИЕ: Не включайте лазер без снятия защитной крышки во избежание повреждения оборудования.

1.5 Электрическая безопасность

 Убедитесь, что станок заземлен через линию РЕ кабеля питания переменного тока. Заземление должно быть прочным и надежным.

ПРЕДУПРЕЖДЕНИЕ: Повреждение линии PE кабеля приведет к замыканию на корпус станка, что может привести к травмам.

 При выходе из строя предохранителя замените его на новый предохранитель того же типа и номинала. Использование иных предохранителей или материалов запрещено.

 Убедитесь в использовании правильного напряжения от источника питания переменного тока.

ВНИМАНИЕ: Подключение лазера к неправильному напряжению может привести к повреждению оборудования

 Станок не содержит комплектующих, требующих сервисного обслуживания, поэтому не пытайтесь снять крышку во избежание поражения током и потери гарантии.

1.6 Дополнительные правила безопасности

 При включенном питании лазера не заглядывайте в порт лазерного выхода.

2) Не работайте с лазером в темноте.

 Нарушение указанных условий и методик эксплуатации оборудования приведет к потере гарантии.

Во избежание потери гарантии запрещается вскрывать оборудование.
Техническое обслуживание должно производиться только сертифицированным персоналом производителя.

02 Описание станка

2.1 Характеристики

Оптоволоконный лазер Raycus RFL-С предназначен для применения в промышленности и научных исследований и отличается высокой эффективностью накачки, низким энергопотреблением и отличным качеством луча. Он компактен и готов к использованию. Лазер может использоваться как самостоятельный станок или в качестве узла устройства пользователя.

Основные особенности:

- Высокое качество луча
- Оптоволоконный световод
- Надежность, долгий срок службы
- Не требует технического обслуживания
- Высокая электрооптическая конверсионная эффективность
- Удобный интерфейс управления
- Быстрая модуляция

Применение:

- Резка
- Сварка
- Научные исследования

2.2 Конфигурация модели

Серия оптоволоконных станков RFL-С включает в себя станки с мощностью лазера 100, 200, 300, 400, 500, 600, 700, 750 и 1000 Вт. Особенности кодировки модели приведены в таблице ниже.

RFL-C500/B/15/W 1 2 3 4 5

- 1. Серия оптоволоконных лазеров RFL-С
- 2. Мощность в Вт (100, 200, 300, 400, 500, 600, 700, 750 и 1000)
- Длина волны. Для всех моделей данной серии длина волны равна 1080 нм
- 4. Длина оптоволокна: стандарт 10 м, опционально 15 м
- 5. Способ охлаждения: W водное, А воздушное

Обычно модели обозначаются кратко, например, RFL-C200, RFL-C300, и т. д. Полное наименование модели указано на идентификационной пластине.

2.3 Содержимое упаковки

Сверьте содержимое упаковки со списком комплектующих для проверки наличия всего оборудования.

2.4 Распаковка и проверка

Оптоволоконный лазер находится в упаковке, которая обеспечивает максимальную защиту. После доставки проверьте упаковку на наличие повреждений. При их обнаружении сохраните упаковку и свяжитесь со службой доставки и поставщиком оборудования.

Извлеките оборудование из упаковки. Будьте аккуратны, чтобы не повредить оптоволоконный кабель. Полный список поставки входит в комплект документации. Проверьте наличие всех компонентов по списку. В случае отсутствия или повреждения комплектующих немедленно свяжитесь с поставщиком. Не пытайтесь монтировать или эксплуатировать лазер при наличии явных или скрытых повреждений! Рекомендуется не выкидывать упаковку, поскольку она потребуется в случае отправки обратно для сервисного обслуживания.

ВНИМАНИЕ: Оптоволоконный кабель и головка лазера являются прецизионными оптическими инструментами. ЛЮБАЯ вибрация или воздействие на головку лазера, а также скручивание или чрезмерный изгиб кабеля, приведет к повреждению прибора.

2.5 Условия эксплуатации

Условия эксплуатации представлены в таблице ниже.

Полная мощность	≥ 5ĸBA
Установка	Плоская поверхность без вибрации
Температура	10°C-40°C
Влажность	≤ 70%

Рекомендуется использовать оборудование в помещениях с кондиционированием воздуха.

2.6 Меры предосторожности

 Перед началом эксплуатации убедитесь в том, что оборудование заземлено.

 Убедитесь, что к станку подключено питание 380 В переменного тока.
Ошибка в подключении питания может привести в повреждению оборудования.

3) Станок не требует сервисного обслуживания со стороны пользователя. Во избежание поражения электрическим током не срывайте гарантийные пломбы и не снимайте защитный кожух. В противном случае действие гарантии прекращается.

4) Аккуратно проверьте наличие пыли и иных загрязнений на лазерной головке. Используйте специальную бумагу для очистки линз. Не прикасайтесь к линзам руками!

 По окончании работы одевайте на лазерную головку защитную крышку, убедившись в чистоте последней.

6) Запрещено устанавливать головку лазера во время работы лазера!

 Не заглядывайте во время работы в лазерную головку! При эксплуатации лазера постоянно используйте защитные очки.

8) Несоблюдение мер предосторожности может привести к выходу из строя и повреждению оборудования без гарантийного обеспечения.

2.7 Технические характеристики

Технические характеристики представлены в следующей таблице.

Модель	RFL-C1000	Тестовые условия				
	Оптические характеристики					
Номинальная мощность на выходе	1000 Bτ					
Режим работы	Непрерывный/Импульсный					
Состояние поляризации	Случайное					
Регулировка выходной мощности	10-100%					
Длина волны	1080 нм	Номинальная мощность на выходе				
Нестабильность энергии импульса излучения	<3%	Номинальная мощность на выходе, продолжительность 5 часов, температура среды 25°С				
Частота модуляции	50 Гц - 5кГц	Номинальная мощность на выходе				
Мощность красного лазера наведения	0.5-1 мВт					

02. Описание станка

Модель	RFL-C1000	Тестовые условия					
Оптические выходные характеристики головки QBH (водное охлаждение)							
Качество луча (ВРР, мм•мрад)	<2	Номинальная мощность на выходе					
Сердечник волокна	50 нм (опционально — 25, 100, 200)						
Длина оптоволокна	15 м						
	Электрические характерис	тики					
Питание	380В±10% переменного тока, 50/60Гц, три фазы, подключение по типу «звезда» (3L + N+ PE)						
Максимальная потребляемая мощность	5000 Вт	Номинальная мощность на выходе					
Режим управления	Программа Hyper Terminal / RS-232/ AD						
	Дополнительные характери	стики					
Размеры (ширина*высота*длина)	485×237×763 (с ручками)						
Bec	<70 кг						
Температура эксплуатации	10°C~40°C						
Влажность	<70%						
Температура хранения	-10°C~60°C						
Охлаждение	Водное						

Таблица 4 Характеристики продукта

Лазерный источник RFL-C1000/B/15/W

Установка

03

3.1 Габаритные размеры

На рисунках 2, 3, 4 показаны размеры оборудования (в мм).

Рис. 3 Вид сзади

Головка лазера произведена по стандарту QBH.

Рис. 5 Головка лазера

ВНИМАНИЕ: Два штырька блокировки на выходной головке должны быть закорочены до включения лазера. Обычно в обрабатывающей головке есть короткие контакты, пожалуйста, проверьте головку, чтобы убедиться в этом.

Осмотрите апертуру перед установкой выходной головки. При необходимости очистите диафрагму.

Категорически запрещается разбирать лазерную головку, в противном случае, это приведет к потере гарантии.

3.2 Требования к системе охлаждения

Параметр	Единицы измерения	Значение
Охлаждающая способность	Вт	>4000
Минимальный поток	л/мин	8
Максимальное давление	Бар	8
Внешний диаметр трубки	ММ	12

К лазерной головке существуют дополнительные требования. Она должна охлаждаться при помощи отдельного контура. Предпочтительно использовать систему охлаждения с двойными температурными выходами, или отдельные чиллеры. Охлаждающая способность должна быть выше 400Вт, минимальный поток 0.5 л/мин, внешний диаметр трубки 6 мм, максимальное давление 2 Бар, использоваться должна деионизированная вода.

ВНИМАНИЕ: Давление воды в лазерной головке QBH должно быть менее 2 Бар во избежание повреждения. Гарантия на данный случай не распространяется

Температура воды:

- Лето (температура воздуха выше 30°С): 29±0.5°С;
- Зима (температура воздуха ниже 30°С): 25±0.5°С.

Требования к охлаждающей воде:

Должна использоваться очищенная вода. Для предотвращения роста плесени и закупорки трубки рекомендуется добавлять спирт (около 10% от общего объема жидкости). Система охлаждения должна оснащаться фильтром. Проверять и очищать фильтр нужно каждые 6 месяцев.

Если оборудование эксплуатируется в условиях температуры воздуха от -10°С до 0°С, доля спирта должна составлять 30% от объема охлаждающей жидкости, и через каждые 2 месяца спирт необходимо добавлять.

При использовании оборудования в условиях температуры воздуха ниже -10°С необходимо использовать систему охлаждения с функциями нагревания и охлаждения и эксплуатировать её постоянно.

Прочие требования:

Перед включением лазера убедитесь в правильности подключения системы охлаждения и отсутствии утечек воды. Несоблюдение условий циркулирования воды может привести к нарушениям в работе лазера.

Если оборудование простаивает длительный период времени, необходимо слить воду из аппарата, после чего необходимо блокировать входное и выходное отверстия при помощи специальных гаек. Несоблюдение данного требования может привести к повреждению оборудования.

ВНИМАНИЕ: Устанавливайте температуру воды в строгом соответствии с требованиями, указанными выше. Слишком низкая температура может привести к конденсации влаги на лазерном модуле и головке и стать причиной серьезного повреждения оборудования.

ВНИМАНИЕ: В первую очередь нужно включать систему охлаждения. Проверьте наличие утечек воды и убедитесь в том, что температура воды имеет рекомендуемое значение перед включением лазера.

3.3 Процедура установки

 Убедитесь, что к станку подключено питание 380 В переменного тока и заземление.

2) Поместите оборудование в соответствующее положение, при необходимости закрепите.

 Подключите кабели электропитания и управления к станку при выключенном питании.

4) Подключите входную и выходную трубки системы охлаждения.

5) Проверьте лазерную головку и при необходимости очистите ее. Запрещено использовать вентилятор, так как он поднимает пыль в воздух, что может стать причиной загрязнения лазерной головки.

6) Не допускайте защемления или чрезмерного изгиба кабеля во время установки.

ВНИМАНИЕ: Все кабели подключаются при отключенном питании. Подключение на горячую может повредить лазер.

ВНИМАНИЕ: При установке оборудования убедитесь в отсутствии изгибов оптоволокна с радиусом менее 30 см. Избегайте чрезмерных скручиваний и плотных изгибов во время работы. Когда оборудование находится на хранении, радиус изгиба оптоволокна должен быть более 20 см.

ВНИМАНИЕ: Избегайте вибрации и воздействия на лазерную головку из-за угрозы ее повреждения.

ВНИМАНИЕ: Убедитесь в чистоте лазерной головки. Правильно храните защитный колпачок, не допускайте его загрязнения, чтобы не загрязнить головку при закрытии.

ВНИМАНИЕ: Запрещено удалять защитное стекло лазерной головки.

Эксплуатация оборудования

4.1 Передняя панель

На рисунке 6 показана передняя панель станка.

 REM/OFF/ON: Включение питания лазера. Вставьте ключ (№1 на рисунке 6); поверните ключ по часовой стрелке в положение ON или против часовой стрелки в положение REM для включения питания лазера. После этого лазер перейдет в режим управления в соответствии с раннее настроенным интерфейсом управления CTRL-INTERFACE. Подробнее смотрите 4.6 Переход в режим управления.

 POWER: Индикатор питания, при наличии питания горит зеленым цветом.

3) LASER: Кнопка лазерного излучения с кольцевым LED-индикатором красного цвета. В режиме «Hyper Terminal» или аналого-цифровом режиме (AD) при нажатии на кнопку станок готов к началу лазерного излучения, и индикатор включен. Повторное нажатие на кнопку отключит лазерное излучение.

 ALARM: Индикатор аварий, сообщает о наличии неисправностей включением желтого индикатора.

17

5) EMERGENCY STOP: Нажатие на эту клавишу используется для немедленной остановки. Для отжатия кнопки необходимо повернуть ее по часовой стрелке, однако лазер не включится, пока не будет повторно повернут ключ включения питания.

4.2 Задняя панель

На рисунке 7 показана задняя панель.

Рис. 7 Задняя панель

1) AC INPUT: Разъем для входа питания, который можно соединить только с вилкой на шнуре питания, идущем в комплекте.

2) POWER: Выключатель питания, главный переключатель лазера.

3) MOD: Вход модуляции, разъем BNC для включения и выключения лазера в режиме дистанционного управления. Управляющий сигнал должен иметь ток более 20 мА, а напряжение должно быть 24 В.

4) CTRL-INTERFACE: Интерфейс управления, представляет собой многофункциональный разъем DB25 (male). С помощью данного разъема можно установить режим управления, получать аналоговые управляющие сигналы, а также посылать сигналы о неисправности.

5) **RS-232:** последовательный порт RS-232 представляет собой разъем DB25 (male), используется в режимах «Hyper Terminal» и RS-232.

6) SERVICE: Сервисный разъем DB25 (female)

7) WATER: Подключение входной и выходной трубок диаметром 12 мм для подачи воды для охлаждения.

ВНИМАНИЕ: Перед подключением питания к оборудованию проверьте его соответствие характеристикам, указанным в таблице 4

4.3 Подключение питания

Кабель питания входит в комплектацию (рисунок 8).

С одной стороны кабеля расположен штепсель, который нужно вставить в разъем AC INPUT на задней панели. Штепсель имеет защиту от неправильного

Рис. 8 Кабель питания

подключения. После вставки штепселя зафиксируйте его с помощью прижима. На другом конце кабеля расположены зачищенные контакты, обозначенные L1, L2, L3, N и PE. Их необходимо подключить к источнику питания переменного тока: L1, L2, L3 — три фазы, N — нормаль, PE – земля.

4.4 Характеристики разъемов 4.4.1 Service

Рис. 9 Характеристики сервисного порта

Сервисный порт представляет собой разъем DB25 (female), как показано на рисунках 7 и 9. Характеристики порта представлены в таблице 6.

№ контакта	Описание	Примечание		
6	INTERLOCK+	Pin 6 и Pin 7 должны быть замкнуты перед		
7	INTERLOCK-	включением питания станка		

Контакты 1-5 не используются. Контакты 6 и 7 должны быть замкнуты перед включением питания станка. При нарушении соединения между контактами 6 и 7 лазерное излучение будет немедленно прервано. Для возобновления работы лазера контакты 6 и 7 необходимо снова соединить, после чего выключить и включить питание лазера при помощи ключа.

ВНИМАНИЕ: Соединенные контакты не должны подключаться к активному сигналу, т. к. это может привести к ошибке в работе или повреждению станка.

4.4.2 Вход модуляции

Сигнал модуляции 24В поступает к разъему, показанному на рисунке 10, по кабелю (рисунок 11).

4.4.3 Разъем управления

Номера контактов разъема управления (CTRL-INTERFACE) показаны на рисунке 12:

Характеристики контактов разъема управления показаны в таблице.

№ контакта	Описание	Примечание		
7	Настройка режима управления (0 → режим RS232, 1→ режим AD)	Напряжение 24В		
9	Заземление настройки режима управления	GND контакта №7		
20	Сигнал неисправности превышение мощности	24B		
21	Заземление сигнала неисправности	GND контактов № 20 и 24		
22	Сигнал аналогового напряжения (Управление питанием лазера)	0~10B		
24	Сигнал неисправности (Высокий уровень означает неисправность лазера)	В качестве заземлени используется контакт №21		
25	Заземление сигнала аналогового напряжения	GND контакта №22		
Таблиц	а. 7 Характеристики контактов разъема	а управления		

На рисунке 13 показана схема подключения.

Рис. 13 Схема подключения разъема DB25

Рабочий уровень сигнала неисправности — высокий, и совпадает с индикатором тревоги на передней панели. Любое отклонение от нормальных параметров работы приведет к появлению сигнала неисправности.

4.4.4 Последовательный интерфейс RS-232

На рисунке 14 показаны номера контактов разъема RS-232.

Рис. 14 Номера контактов разъема RS-232

Характеристики контактов разъема управления показаны в таблице.

№ контакта	Описание
2	RX
3	ТХ
5	GND

Остальные контакты не используются. Кабель для подключения к разъему RS-232 входит в комплектацию.

Рис. 15 Кабель для подключения к разъему RS-232

ВНИМАНИЕ: Проверьте уровень напряжения сигналов управления и убедитесь, что оно соответствует требованиям. Превышение напряжения и его колебания могут привести к повреждению станка

4.5 Режимы управления

Существует 2 режима работы лазера — непрерывный и импульсный (CW и modulated). В непрерывном режиме лазерное излучение постоянно, и мощность его задается в процентах от максимального значения. В импульсном режиме излучение происходит в форме импульсов. Параметры импульсов могут быть заданы при помощи подключаемого компьютера.

Возможны следующие режимы управления станком: через программу «Hyper Terminal», через интерфейс RS-232 и через аналого-цифровой вход (режим AD). Последние два режима управления являются удаленными. В режимах «Hyper Terminal» и RS-232 можно настраивать параметры режимов работы лазера. Однако в режиме AD выходное напряжение контролируется входным аналоговым сигналом, и лазерное излучение определяется входным сигналом модуляции.

Для слежения за условиями работы лазера предназначены датчики: в случае нарушения необходимых условий лазер отключается, и информация о неисправности посылается на разъем RS-232.

4.6 Переход в режим управления

На рисунке 16 показан процесс перехода в нужный режим управления.

Как показано на рисунке, для перехода в режим управления «Hyper Terminal» необходимо повернуть ключ в положение ON; для перехода в режим AD необходимо подать 24В на контакты 7 и 9 разъема CTRL-INTERFACE. Несмотря на то, что оба положения ключа (ON и REM) позволяют перейти в режимы удаленного управления, рекомендуется использовать положение ключа REM.

4.7 Режим «Hyper Terminal»

Программа «Hyper Terminal» работает в ОС «Windows» и позволяет настраивать параметры работы станка, а также отслеживать и удалять сообщения об ошибках.

4.7.1 Подключение в режиме «Hyper Terminal»

Подключите кабель RS-232 и питание согласно схеме на рисунке 17.

Убедитесь, что используются кабели, идущие в комплекте со станком, и в том, что перемычка установлена. Кабель МОD показан пунктирной линией, потому что в этом режиме управления он может не понадобиться. Подробнее см. 4.7.3 Работа в режиме «Hyper Terminal». Остальные разъемы на задней панели в данном режиме остаются неподключенными.

4.7.2 Настройка ПО «Hyper Terminal»

Для настройки работы программы «Hyper Terminal» необходимо выполнить следующие действия:

1) В OC «Windows» последовательно выбрать Пуск — Служебные — Связь — Hyper Terminal.

2) В диалоговом окне выбрать «Hyper Terminal» в качестве программы по умолчанию для протокола telnet.

 В открывшемся окне программ «Hyper Terminal» вбить название нового подключения и нажать «OK».

 Выбрать COM-порт, к которому подключен станок при помощи кабеля RS-232, и нажать «OK».

5) Настроить протокол подключения: Baud rate-9600, Data Bits-8, Parity-None, Stop bits-1, Flow Control-None, после чего нажать «OK».

После этого настройка программы «Hyper Terminal» завершена.

4.7.3 Работа в режиме «Hyper Terminal»

Перед началом работы проверьте подключение кабелей, системы охлаждения, оптоволокна и состояние лазерной головки. Убедитесь в том, что перемычка установлена, и в отсутствии лазерного излучения. После этого включите систему охлаждения.

Поверните ключ в положение ON для запуска лазера. Система начнет автопроверку, и при отсутствии неисправностей в окне программы «Hyper Terminal» отобразится следующая информация:

welcome to use Raycus fiber faser
The Model is RFL-CXXX/X/X/X(the model name of the laser)
Checking RS-232 connection
RS-232 connected
System is doing self-check, please wait
Interlock is OK
The laser emission is initially disabled
Checking Temperature
Temp 1 is normal
Temp 2 is normal
T 2 1
1 emp 3 is normal
Temp of BDO is normal

Если лазерное излучение не отключено, выключите питание лазера и проверьте состояние кнопки LASER на передней панели станка. В случае, если кнопка была нажата, повторно нажмите на нее для отключения, после чего заново включите станок при помощи ключа. Лазерное излучение можно будет включить после завершения автопроверки системы.

Checking RS-232 connection
RS-232 connected
System is doing self-check, please wait
Interlock is OK
The Laser emission is initially enabled, please power off the laser and check if LASER button on
the front panel is pressed down

При появлении ошибки установки перемычки необходимо выключить питание станка и проверить состояние перемычки, установить ее правильно, после чего заново включить станок.

Checking RS-232 connection
RS-232 connected
System is doing self-check, please wait
Interlock error, please power off the laser and check interlock connection

Во время проведения автопроверки системы отображается надпись «System has started, please wait...». После этого, в случае обнаружения ошибок, на мониторе будет показан список ошибок и предложение нажать и удерживать клавишу «U» в течении 3 секунд для перехода к интерфейсу пользователя.

Error 1 record is 0
Error 2 record is 0
Error 3 record is 0
Error 4 record is 0
Error 5 record is 0
Press 'U' in 3 seconds to enter UI

Ошибки 1-5 — это различные ошибки, например, ошибка выходного напряжения, ошибка перегрева, и т. д. Отображается только частота их появления. Нажмите клавишу «U» для перехода к интерфейсу пользователя. Если этого не сделать, система перейдет в режим управления RS-232 с отключением CTRL-INTERFACE. Для возврата назад и перехода к интерфейсу пользователя необратимо выключить и заново включить станок, после чего выполнить перечисленные выше действия. **Учтите, что нужно вводить заглавную букву «U».**

После перехода в пользовательский интерфейс отобразятся следующие опции:

You have entered UI, press 'Enter'		
Welcome to use Raycus fiber laser		
Please choose the operation mode:		
1-> CW mode		
2->Pulse mode		
3->CW mode with remote modulation		
4->Pulse mode with remote modulation		
5->Clear errors		
6->Save system configurations		
7->Return		

Для перехода в нужный режим необходимо нажать соответствующую цифру на клавиатуре.

CW mode. Нажмите цифру 1 для перехода в непрерывный режим работы. В этом режиме излучение лазера является постоянным, необходимо настроить только мощность лазера в процентах от максимального уровня и нажать «Enter» для подтверждения.

The present operation mode is CW mode

Please set percentage of output power (MIN=0, MAX=100), press 'Enter' to confirm:

После ввода значения мощности лазера (например, 20%) появится предложение нажать «Enter» для подтверждения, после чего можно нажать клавишу «7» для возврата к предыдущему меню или «Enter» для сброса введенного значения. Please set percentage of output power (MIN=0, MAX=100), press 'Enter' to confirm:20

Press '7' to return to previous menu, press 'Enter' to reset

После ввода значения мощности лазерного излучения возможна работа с лазером (на передней панели нажата кнопка LASER). В этом режиме разъем MOD на задней панели станка отключен.

Pulse mode. На странице выбора режима нажмите клавишу 2 для перехо да в импульсный режим. Необходимо установить значение 3 параметров: repetition frequency (рабочая частота), duty cycle (цикл загрузки) и percentage of output power (процент от выходной мощности). Например, установим частоту повторений 2кГц, цикл загрузки 50% и уровень мощности 60%.

The present operation mode is pulse mode

Please set repetition frequency (MIN=50, MAX=50000), press 'Enter' to confirm: 2000

Please set duty cycle (MIN=0, MAX=100), press 'Enter' to confirm: 50

Please set percentage of output (MIN=0, MAX=100), press 'Enter' to confirm:60

Для возврата к предыдущему меню нужно нажать клавишу «7», для сброса введенных значений - клавишу «Enter».

Если введенные значения расположены за пределами соответствующих диапазонов, система вернется к настройкам и подскажет, какие значения являются корректными. После ввода значений параметров лазерного излучения возможна работа с лазером (на передней панели нажата кнопка LASER). В этом режиме разъем MOD на задней панели станка также отключен.

CW mode with remote modulation и Pulse mode with remote modulation. Для выбора данных режимов используются клавиши 3 и 4. Настройки режимов не отличаются от настроек режимов CW mode и Pulse mode, добавляется параметр сигнала удаленной модуляции. Необходимо подключить кабель к разъему MOD. Напряжение сигнала модуляции составляет 24B, рабочий уровень — высокий. После окончания настройки параметров возможна работа с лазером (на передней панели нажата кнопка LASER). В этом режиме разъем MOD на задней панели станка подключен.

Clear errors. Нажмите цифру 5 для очистки записей об ошибках, после чего нажмите цифру 7 для возврата в предыдущее меню.

Error records are cleared

Press '7' to return to previous menu

Save system configurations. Данная операция предназначена только для использования представителями производителя.

4.8 Режим передачи данных RS-232

Режим передачи данных по интерфейсу RS-232 предназначен для удаленного управления станком. В этом режиме при помощи протокола обмена данными можно настраивать параметры излучения и отслеживать состояние станка. Помните, что в данном режиме кнопка LASER не используется, но при этом она должна быть отжата.

4.8.1 Подключение в режиме RS-232

Рис. 18 Схема подключения в режиме RS-232

Подключите кабели RS-232 и MOD, а также кабель питания в соответствии с рисунком 18. Убедитесь в правильности подключении кабелей и установки перемычки. Остальные разъемы в режиме RS-232 остаются неподключенными.

4.8.2 Протокол обмена данными

Протокол подключения представлен в таблице ниже.

	Описание	Пример	
1B 4F 0D	Включение лазерного излучения Запрос: 1В 4F 0D		
1B 53 0D	Выключение лазерного излучения	Ответ: 54 53 0D	
1B 4F 0D	Включение лазерного излучения	Запрос: 1В 4F 0D Ответ: 54 53 0D	
1B 53 0D	Выключение лазерного излучения Ответ: 54 53 0D		
1B 43 50 XX 0D	Настройка работы в непрерывном Запрос: 1В 43 50 32 0D режиме, XX – процент от выходной Ответ: 54 53 0D мощности, диапазон значений от 0 до Переход в непрерывный режи 64 (в шестнадцатеричном формате) мощность 50%		
1B 46 XXXX 44 ## 50 && 0D	Настройка работы в импульсном режиме, XXXX – частота повторений, 32–C350; ## - цикл загрузки, 0–64; && - уровень мощности, 0–64. Все параметры в шестнадцатеричном формате	Запрос: 1В 46 1388 44 3С 50 50 0D Ответ: 54 53 0D Переход в импульсный режим, частота повторений 5кГц, цикл загрузки 60%, мощность 80%	
54 53 0D	Ответ после получения кода запроса	/	
54 45 31 0D	Ошибка ответа 1 /		
54 45 32 0D	5 32 0D Ошибка ответа 2 /		
54 45 33 0D	Ошибка ответа З	/	
54 45 34 0D	Ошибка ответа 4	/	
54 45 35 0D	Ошибка ответа 5	1	
54 45 36 OD	Ошибка ответа 6	/	
54 45 37 0D	Ошибка ответа 7	/	
54 45 38 0D	Ошибка ответа 8	Ошибка ответа 8 /	
54 45 39 0D	54 45 39 0D Ошибка ответа 9 /		
54 45 40 OD	Ошибка ответа 10	/	

4.8.3 Работа в режиме RS-232

Перед началом работы проверьте подключение кабелей, системы охлаждения, оптоволокна и состояние лазерной головки. Убедитесь в том, что перемычка установлена, и в отсутствии лазерного излучения. После этого включите чиллер.

Поверните ключ в положение REM для включения станка, после чего система начнет автопроверку. В случае, если перемычка не вставлена или нажата кнопка LASER, система не пройдет автопроверку. В этом случае необходимо отключить питание станка, решить проблему и заново включить питание. После этого система в течение 30 секунд проводит автопроверку, по завершении которой пользователь может послать запрос с компьютера. В режиме RS-232 лазерное излучение происходит после получения кода «Emission On» (1В 4F 0D), установки параметров операции и получения удаленного сигнала модуляции через разъем MOD.

В режиме RS-232 можно использовать программу «Hyper Terminal» для отслеживания состояния лазера. Для этого необходимо запустить программу и настроить ее, как показано в разделе 4.7.2. Однако регулировать параметры работы через программу в данном режиме нельзя.

4.9 Режим AD

Режим AD также является режимом удаленного управления. В этом режиме выходная мощность устанавливается при помощи аналогового сигнала, при этом импульсный режим работы недоступен.

4.9.1 Подключение в режиме AD

Подключите кабель MOD и кабель питания, как показано на рисунке 19. Убедитесь в правильности подключения и в установке перемычки. В комплектацию не входит кабель CTRL-INTERFACE. Вы можете заказать его отдельно или изготовить его самостоятельно с учетом информации из таблицы 5 и рисунка 13. Помните, что 24В должны поступать на контакты 7 и 9, а аналоговый сигнал — на контакты 22 и 25. Сигнал неисправности соответствует индикатору ALARM, поэтому его можно использовать для удаленного мониторинга неисправностей.

В режиме AD можно использовать программу «Hyper Terminal» для отслеживания состояния лазера. Для этого необходимо подключить станок кабелем RS-232 к компьютеру.

4.9.2 Работа в режиме AD

Перед началом работы проверьте подключение кабелей, системы охлаждения, оптоволокна и состояние лазерной головки. Убедитесь в том, что перемычка установлена, и в отсутствии лазерного излучения. После этого включите систему охлаждения.

Поверните ключ в положение REM для включения станка, после чего система начнет автопроверку. В случае, если перемычка не вставлена или нажата кнопка LASER, система не пройдет автопроверку. В этом случае необходимо отключить питание станка, решить проблему и заново включить питание. После этого система в течение 30 секунд проводит автопроверку, по завершении которой станок готов к получению аналогового сигнала. Пользователь может нажать на кнопку LASER для включения лазерного излучения (для этого должны поступать сигналы удаленной модуляции через разъем MOD).

ВНИМАНИЕ: Напряжение аналогового сигнала не должно превышать 10В во избежание повреждения станка.

05 Гарантийные обязательства

Гарантийный срок службы составляет 6 месяцев со дня приобретения. Гарантия сохраняется только при соблюдении условий эксплуатации и регламентного обслуживания.

1. Общие положения

1.1. В случае приобретения товара в виде комплектующих Продавец гарантирует работоспособность каждой из комплектующих в отдельности, но не несет ответственности за качество их совместной работы (неправильный подбор комплектующих).

В случае возникновения вопросов Вы можете обратится за технической консультацией к специалистам компании.

1.2. Продавец не предоставляет гарантии на совместимость приобретаемого товара и товара, имеющегося у Покупателя, либо приобретенного им у третьих лиц.

1.3. Характеристики изделия и комплектация могут изменяться производителем без предварительного уведомления в связи с постоянным техническим совершенствованием продукции.

2. Условия принятия товара на гарантийное обслуживание

2.1. Товар принимается на гарантийное обслуживание в той же комплектности, в которой он был приобретен.

3. Порядок осуществления гарантийного обслуживания

3.1. Гарантийное обслуживание осуществляется путем тестирования (проверки) заявленной неисправности товара.

 3.2. При подтверждении неисправности проводится гарантийный ремонт.

4. Гарантия не распространяется на стекло, электролампы, стартеры и расходные материалы, а также на:

4.1. Товар с повреждениями, вызванными ненадлежащими условиями транспортировки и хранения, неправильным подключением, эксплуатаци-

ей в нештатном режиме либо в условиях, не предусмотренных производителем (в т.ч. при температуре и влажности за пределами рекомендованного диапазона), имеющий повреждения вследствие действия сторонних обстоятельств (скачков напряжения электропитания, стихийных бедствий и т.д.), а также имеющий механические и тепловые повреждения.

4.2. Товар со следами воздействия и (или) попадания внутрь посторонних предметов, веществ (в том числе пыли), жидкостей, насекомых, а также имеющим посторонние надписи.

4.3. Товар со следами несанкционированного вмешательства и (или) ремонта (следы вскрытия, кустарная пайка, следы замены элементов и т.п.).

4.4. Товар, имеющий средства самодиагностики, свидетельствующие о ненадлежащих условиях эксплуатации.

4.5. Технически сложный Товар, в отношении которого монтажно-сборочные и пуско-наладочные работы были выполнены не специалистами Продавца или рекомендованными им организациями, за исключением случаев прямо предусмотренных документацией на товар.

4.6. Товар, эксплуатация которого осуществлялась в условиях, когда электропитание не соответствовало требованиям производителя, а также при отсутствии устройств электрозащиты сети и оборудования.

4.7. Товар, который был перепродан первоначальным покупателем третьим лицам.

4.8. Товар, получивший дефекты, возникшие в результате использования некачественных или выработавших свой ресурс запасных частей, расходных материалов, принадлежностей, а также в случае использования не рекомендованных изготовителем запасных частей, расходных материалов, принадлежностей.

Изготовлен и принят в соответствии с обязательными требованиями действующей технической документации и признан годным для эксплуатации.

№ партии:	
	1

ОТК

www.purelogic.ru

Обращаем Ваше внимание на то, что в документации возможны изменения в связи с постоянным техническим совершенствованием продукции. Последние версии Вы всегда можете скачать на нашем сайте <u>www.purelogic.ru</u>

